什么是正態(tài)分布?在CFA考試中是有很多的數(shù)學知識的,想要學好金融知識,數(shù)學基礎也是要有的,那2021年CFA備考中的正態(tài)分布如何理解?考試題型是怎樣的呢?小編給你說說!
正態(tài)分布(Normal distribution)又名高斯分布(Gaussian distribution),因其曲線呈鐘形,因此人們又經(jīng)常稱之為鐘形曲線。
正態(tài)曲線呈鐘型,兩頭低,中間高,左右對稱,曲線與橫軸間的面積總等于1。
正態(tài)分布有兩個參數(shù),即均數(shù)μ和標準差σ,可記作N(μ,σ^2):均數(shù)μ決定正態(tài)曲線的中心位置;標準差σ決定正態(tài)曲線的陡峭或扁平程度。σ越小,曲線越陡峭;σ越大,曲線越扁平。我們看看一道CFA考試題就知道了!
An analyst determines that approximately 99% of the observations of daily sales for a company are within the interval from $230,000 to $480,000 and that daily sales for the company are normally distributed. If approximately 99% of all the observations fall in the interval μ ± 3σ, then using the approximate z-value rather than the precise table, the standard deviation of daily sales for the company is closest to:
A. $41,667.
B. $62,500.
C. $83,333.
解析:選A。均值為(230,000 + 480,000)/2 = 355,000,然后可知480,000 - 355,000 = 125,000,125,000 / 3 = 41,667。
u變換:為了便于描述和應用,常將正態(tài)變量作數(shù)據(jù)轉(zhuǎn)換。μ是正態(tài)分布的位置參數(shù),描述正態(tài)分布的集中趨勢位置。正態(tài)分布以X=μ為對稱軸,左右完全對稱。正態(tài)分布的均數(shù)、中位數(shù)、眾數(shù)相同,均等于μ。
σ描述正態(tài)分布資料數(shù)據(jù)分布的離散程度,σ越大,數(shù)據(jù)分布越分散,σ越小,數(shù)據(jù)分布越集中。也稱為是正態(tài)分布的形狀參數(shù),σ越大,曲線越扁平,反之,σ越小,曲線越瘦高。